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Abstract—Cloud computing offers to the end user the ability
of accessing a pool of resources with the Pay as Use (PaU)
model. By leveraging this technology, users can benefit from
hardware virtualization for on-demand resource acquisition and
rapid elasticity. However, there is no effective tool to analyze
virtual hardware performance, especially when isolation between
these virtual resources is not adequate. The existing tools need to
access and trace the whole activity of the VM and host. However,
in most cases, tracing the virtual machine (VM) is not possible
because of security issues and the added overhead. Therefore,
there is a need for a tool to troubleshoot unexpected behavior of
VMs without internal access for tracing or debugging.
In this paper, we propose a new method to study the state of
CPUs inside VMs without internal access. Our tool can detect
unexpected delays and their root causes. We developed a virtual
CPU (vCPU) state analyser to detect the state of vCPUs along
with the reason for being in that state. This approach relies on
host tracing, thus adding less overhead to VMs as compared
to existing approaches. Then we propose a new approach for
profiling threads inside the VMs by host tracing. We implemented
different views for the TraceCompass trace viewer to let the
administrator visually track different threads and their states
inside the VMs. Our tool can detect different problems such as
overcommitment of resources.

Keywords—Virtualization; KVM; Performance Analysis; vCPU
states; LTTng; TraceCompass

I. INTRODUCTION

Monitoring and analyzing large-scale distributed system
in terms of debugging and troubleshooting is always a big
challenge for infrastructure providers. This challenge becomes
more considerable when cloud resources are monitored [1].
Cloud computing is a promising paradigm that comes with
on-demand resource acquisition and rapid elasticity. It lets
end-users quickly scale their resources from a pool of shared
resources. Sharing resources plays an important role in uti-
lizing resources and reducing operational costs. Moreover,
the most important motivation of infrastructure providers is
maximizing profit by leveraging their resources for delivering
service to thousands of cloud users [2]. Despite its merits,
cloud users may experience performance degradation, due to
resource sharing and interference between virtual machines.
Interference between VMs shows itself as latency in response
time of programs inside VMs. As we saw in our experiments,
execution time for identical tasks varies when VMs are com-
peting for the same resources. Diagnosis of this kind of latency
by analysing the guest is always complex. The reason being
that the VM does not have access to its external environment
and also has the illusion of exclusive usage of whole resources.

OpenStack [3] is an open source project which acts as
infrastructure Provider (IP). It aims to provide control and

management APIs for virtual resources. It lets the infrastruc-
ture administrator create and manage virtual instances. It is
made up of many components namely Nova for computing,
Neutron as network management component, and Ceilometer
as monitoring tool. Ceilometer is a basic metering, monitoring
and alarming tool in the Openstack. In term of CPU metrics, it
has physical CPU time usage, average physical CPU utilization
and number of vCPU allocated to each instance[4]. Although
the metrics that Ceilometer collects are sufficient for billing,
they are not enough for assuring QoS and troubleshooting in
virtual machines. For example, Netflix could suffer from CPU
steal time when they use the Amazon Web Service (AWS)
as partner for services and delivery of content [5]. Therefore,
there is an absolute need for a low-overhead tool to investigate
the root cause of unexpected latency in virtual environments.
The tool should be transparent to the guest operating system
and should not add overhead to VMs.

This paper focuses on studying virtualization of CPUs
for different VMs. In particular, we developed a vCPU state
detection that can automatically investigate the root cause
of latency in the VM by host tracing. Massive amount of
information about the program executing in the VM is hidden
in the vCPU thread in the host. Our tool can inspect the
buried information in the vCPU thread and convert it to
meaningful knowledge about the thread running on the vCPU.
Our approach can find out the performance jitter and its root
cause, which is crucial for real time applications. Moreover,
it can examine vCPU preemption, as indicator of over-sold
VMs in an infrastructure to maintain QoS at an acceptance
level of service. It can detect frequent exit reasons which
could be an indicator of problems inside the VM and convert
them to essential information about the VM. It also lets the
infrastructure administrator detect under-performing hosts and
carry out better capacity planning for CPU over-shared hosts.
Furthermore, we propose an approach to discover the threads
inside the VMs when they are executing on a vCPU. This
technique employs a VM thread execution flow. From our
graphical view, all the activities of the thread inside the VM,
like I/O operation, CPU usage, and Memory operation can be
uncovered. It also can be used as low-overhead thread profiler
inside the VM, without tracing the VM.

Our main contributions in this paper are: First, we propose
a fine-grained vCPU state analysis based on host tracing. All
the tracing and analysis phase is transparent to the VMs.
Therefore, there is no need for internal access within VMs,
which is not allowed in most situations because of security
reasons. Secondly, we propose a method to build the execution
flow of the threads inside the VM without tracing the VM.
Thirdly, we implemented three graphical views as follows:



first, a graphical view for vCPU threads from the host point
of view. It represents vCPU threads along with other threads
inside the host. Secondly, we built a graphical view for the
CPUs inside the VM. Thirdly, we present a graphical view
for the running threads inside the VM, with their name, PID
and parent PID. The rest of this paper is organized as follows:
Section II presents a summary of other existing approaches
in troubleshooting VMs, and identifies the technique closest
to our approach. Section III introduces different vCPU states
and their requirements. We also present the algorithm used
to retrieve information from vCPU threads. In section IV, we
explained the different layers of the architecture that we use
in our paper. We also describe the tracer that we used to
gather meaningful information about the VMs. We show some
use cases of our analysis in section V and section VI. The
added overhead with our approach is compared with existing
approaches in section VII. In section VIII we propose and
implement a new approach for thread analysis inside the VMs
without tracing the guest OS. IX concludes the paper.

II. RELATED WORK

Several performance monitoring tools for virtual machines
have been enhanced for practical use. Most of them like Cloud-
Watch [6] are closed-source and the information about how
they monitor virtual hardware is a secret. In this section we
summarize most of the practical tools available for monitoring
VMs with their advantages and drawbacks.

Novakovic et al. [7] used some of the performance counters
and Linux tools like iostat [8] for monitoring disk. Although,
the metrics obtained present a general idea about resource us-
age of VMs, this information could not be used to pinpoint the
root cause of latency in a VM. Also, most Linux tools such as
iostate [8] and vmstat [9] gather statistics by reading proc files
with significant overhead. Therefore, it is not recommended
to exploit these for implementing a low-overhead monitoring
system. PerfCompass [10] is a fault anomaly detection tool
for internal and external faults. Internal faults have local
impact and external faults have global impact on the system.
It also counts the most frequent system calls in the system,
to inform cloud administrators about the cause of problems.
Furthermore, they used other anomaly detection tools to trigger
PerfCompass. PerfCompass can then detect the problem and
report it to the admin. To implement it, they trace VMs with
LTTng to count and profile the program inside the VM. As
a result, they significantly increase the overhead on the VMs
due to tracing all system calls and threads activity.

In [11],[12], they implemented guest-wide and host-wide
profiling, which uses Linux perf to sample the Linux kernel
running in KVM. It allows profiling of applications inside the
guest by sampling the program counter (PC) from perf. After
PCs are retrieved from perf, they map them to the binary
translated code of the guest to find out the running time for
each function inside the VMs. To have a more precise profiler,
the sampling rate should be increased, which causes more
overhead to the VMs. Khandual et al. in [13] presents Linux
perf based virtualization performance monitoring for KVM.
They benefit from counting the occurrence of different events
in the guest to detect anomalies. In their work, they need
to access each VM, which is not possible most of the time
because of security issues and overhead. While increments to
values of some event counters could be an indicator of problem

in the guest, it cannot show the exact problem and the time.
In [14], the authors implemented a CPU usage monitoring
tool for kernel-based virtual machine (KVM) relying on ”perf
kvm record”. By profiling all CPUs, they could monitor CPU
usage of VMs and the total CPU usage of the hypervisor. In
their work, they needed to profile the guest kernel and host
kernel at the same time. They were capable of finding the
overhead introduced by virtualization for VMs as a whole, but
they cannot measure it for each VM separately. Wang in [15]
introduced VMon, monitoring virtual machine interference by
using perf. From all the available CPU metrics, they used the
last level cache (LLC) as indicator of over commitment of
CPU. They showed that LLC has a direct relationship with
performance degradation. LLC could be an indicator of CPU
overcommitment for CPU intensive workloads, but the result
will be different when memory intensive tasks are running in
the VM.

The work closest to ours, which motivated the research
presented in this paper, is presented in [16]. They propose a
method to retrieve the preemption state for vCPUs by using
traces from the host kernel and each VM. They are able to
study the root cause of preemption, whether it is a VM or
a host thread. To implement it, after tracing the host and all
guests, they synchronize each VM with host timestamps. Then,
they build a control flow of each thread inside the host and each
VMs separately. Moreover, they propose a method to search
through all threads in the VMs and host and find preemption
states. Synchronization, building control flow of each thread,
and finding the preemption state through searching all threads,
are time consuming. This therefore adds more overhead to
VMs. While comparing this work with ours, we observed that
this approach of tracing VMs adds at least 6% overhead to each
VM. Moreover, tracing the VMs is not allowed all the time.
Thus, their method could not retrieve the vCPU state when
access to VMs is restricted. In our work, we do not trace
VMs, so there is no need for synchronization. We examine
different states of vCPUs on the fly, when the control flow of
threads for the host is building. As a result, our work adds
less overhead to VMs and needs less time to build the state
of vCPUs. Moreover, our work is totally independent from the
guest operating system (OS) and can identify the root cause
of latency for any VM with any OS.

III. CPU STATES FOR VIRTUAL MACHINES

Hardware-assisted virtualization (Intel-VT and AMD-V)
is an important milestone in the virtualization technology.
In comparison to other virtualization technologies (e.g, para-
virtualization and full-virtualization), hardware-assisted virtu-
alization reduces the overhead of managing privileged in-
structions at the host level by executing non-privilaged VM
code directly on the physical CPU. In addition, it provides
faster switching between Virtual Machine Monitors (VMM)
and guest OSs, better management of memory, and assigning
host I/O devices to VMs securely.

VMM, known as Hypervisor, acts as host and is the primary
software in virtual technology. It has the selective control of
host resources and is layered between the virtual machine and
hardware. It lets the virtual machines run their code directly on
physical CPUs and control the processor and other resources
(e.g., Memory and I/O) in the host machine. On the other
end, guest software consists of the virtual machine OS and



the applications running on top of its OS. Guest software has
the illusion of controlling the entire system, but its access to
privileged operations is being reduced and is given to VMM.
Intel processors (and similarly AMD processors) support two
operational modes for running VMM code and guest software
code, named VMX root mode and VMX Non-ROOT mode,
respectively. Guest software executes as vCPU in VMX Non-
ROOT mode, under the authority of the VMM which operates
in VMX root mode. In general, the vCPU could be in one
of ROOT, Non-ROOT, PREEMPTED, WAITING, and IDLE
states. Figure 1 shows different states and the conditions to
reach those states. In both ROOT and Non-ROOT states, the
vCPU is in running mode. In contrast, in the PREEMPTED,
WAITING, and IDLE states, the vCPU is not executing any
code. The PREEMPTED state is when the vCPU is being
scheduled out by the host CPU scheduler without notifying the
guest OS. The IDLE state is when the vCPU is being scheduled
out voluntarily by sending the HLT signal from the guest OS.
In the WAITING state, the vCPU thread is waiting for the
physical CPU for being free to schedule in. The completion
time of a task (the time when a task is submitted until it is
finished) inside a VM can increase when the vCPU assigned
to the task is in the PREEMPTED or WAITING states. It
deteriorates further when the PREEMPTED state is not visible
inside the VM and it could introduce delays through increasing
execution duration for the task. In the following subsection, we
describe each state in details.

Fig. 1: vCPU state transition
A. VMX ROOT and Non-ROOT State

A running vCPU operates in two states, named root and
non-root states. In the non-root state, the VM’s OS can execute
most privileged instructions but some of them are restricted
and should be executed in root state. In general, VMM code
executes in root state and guest software executes in non-
root state. For example, in Linux using KVM-QEMU virtual
machine, the KVM code runs in root state and the Qemu codes
runs in non-root state. Executing some privileged commands
like VMCLEAR forces the vCPU to exit from non-root state
and operates in root state. The transition between these two
states for a vCPU is called VMX transition.

In each VMX transition, some information about the guest
software and VMM is stored in the virtual machine control
data structure (VMCSs) to manage transitions into and out of
VMX non-root. Regularly, the VMM uses separate VMCS for
each vCPU. VM-exit information field in the VMCS shows

the reason for exiting from non-root mode. Some important
vm-exit reasons are external interrupt, internal interrupt, EPT
violation, hlt, and task switch. In the KVM module, each tran-
sition between root mode and non-root mode is instrumented
with kvm entry and kvm exit (We elaborate more in section
IV). In the transition from VMM to guest software, the state
of the guest software is retrieved from the VMCS and the state
of the VMM is stored into the VMCS. When the transition is
completed, the kvm entry event occurs. while transiting from
guest software to the VMM, the state of the guest software is
stored in the VMCS and the state of the VMM is retrieved from
the VMCS. As a result, there is an event named as kvm exit
with a field that shows the reason for exiting. This field could
be used in order to find other states. To summarize, when a
vCPU thread is scheduled in, it enters the root state until the
kvm entry event happens. Then, it transitions between non-
root state and root state with each kvm exit and kvm entry.

B. IDLE State

The IDLE state indicates that a vCPU is scheduled out
because it did not have any code to execute. When a task inside
the VM is finished or the task is waiting for other resources,
a VM exit identifying the exit reason of HLT occurs. In this
case the state of VM is stored in the VMCS and the host CPU
scheduler chooses another thread ready to run on the physical
CPU. In Linux, there is a static trace point for sched switch
which shows when a thread is scheduled out and another thread
is scheduled in. If and only if a vCPU is scheduled out with
exit reason of HLT, it goes to IDLE state.

C. PREEMPTED State

This state represents the vCPU executing some code but the
host CPU scheduler scheduled out the vCPU thread from the
physical CPU. In a cooperative multitasking system, in order
to let other processes get the same amount of CPU time, the
CPU scheduler schedules out the thread after its time slice is
expired. Normally, when a vCPU thread is preempted inside
the host, it does not inform the guest software. As a result, the
completion time of a task inside the VM increases. In Linux,
the scheduler runs every ’time slice’ to choose other potential
threads that are ready to run. Although the sched switch event
provides some information about the scheduled out thread and
the scheduled in thread, it is not an indicator of if the vCPU
is in the preempted mode or idle mode. As we mentioned
above, if the vCPU is not executing any code, it executes the
privileged HLT instruction, causing a transition to the VMM
mode. In this case, the vCPU thread voluntarily yields the
physical CPU. Otherwise, when not halting, it indicates that
the vCPU is running code but its time slice is expired. Thus,
the host CPU scheduler decided to schedule out this thread to
let other ready processes run their code.

D. WAIT State

The WAIT state demonstrates that the vCPU is in the
running queue of the host, but it is waiting for a physical CPU.
This also adds latency to the execution of a vCPU. The WAIT
state mostly happens when there is not enough physical CPUs,
so each vCPU should wait at some point to be scheduled in. In
Linux, sched wakeup shows that a thread has waken up and
is waiting for a physical CPU. The duration of that interval,
from the time the vCPU thread wakes up until when the vCPU
is scheduled on a physical CPU, is labeled as the WAIT state.



It also introduces delays throughout increasing the completion
time of a task inside a VM.
E. Virtual CPU State Building (VSB) Algorithm

Algorithm 1 vCPU state builder (VSB) Algorithm

1: procedure VCPU STATE BUILDER(Input: event Output:
Updated SHT)

2: switch event do
3: case sched wakeup
4: thread = value of comm field
5: Modify Status attribute of vCPUi as wait
6: case kvm exit
7: exit reason = value of exit reason field
8: Modify exit reason attribute of vCPUi as

exit reason
9: Modify Status attribute of vCPUi as VMX root

10: case kvm entry
11: vcpu = value of vcpu id field
12: Modify Status attribute of vCPUi as VMX

non root
13: case sched switch
14: next thread = value of next comm field
15: prev thread = value of prev comm field
16: if next thread == vCPUj thread then
17: Modify Status attribute of vCPUj in SHT

as VMX root
18: end if
19: if prev thread == vCPUi thread then
20: exit reason = Query exit reason of vCPUi

21: if exit reason == HLT then
22: Modify Status attribute of vCPUi as

IDLE
23: else
24: Modify Status attribute of vCPUi as

Preempted
25: end if
26: end if
27: end procedure

Each virtual CPU could be in a different state, namely
VMX root, VMX non-root,idle, preempted and wait. Among
the aforementioned states, wait, preempted and VMX root
affect the completion time of the task that is running on a
virtual CPU. Finding these states for a virtual CPU could
help us to diagnose the execution latency inside a virtual
machine. In order to build the vCPU state, we use some kernel
tracepoints from LTTng as follows.

The most important tracepoint in our analysis is
sched switch. It represents which thread is scheduled in and
which one is scheduled out from a physical CPU (pCPU). By
looking at next thread and former thread fields in the payload
of sched switch, we can ascertain the duration of a vCPU
and whether it is in the running or IDLE state. In case no
process runs on a vCPU, it yields the vCPU thread and lets
the scheduler execute other processes on the pCPU. In case
a process runs on a vCPU for a long time, the scheduler
could schedule out the vCPU thread and schedule in other
threads. By looking at the intervals of running vCPUs on
physical CPUs, the total CPU usage of each virtual machine
can be determined. The kvm entry and kvm exit events are

the two other important tracepoints in our analysis. These two
tracepoints depict the interval for which a vCPU is running in
VMX root or VMX non root state. A useful payload field
in the kvm entry event is vcpu id, showing the id of the
running vCPU inside the VM. Another useful payload field
is exit reason in the kvm exit event. The exit reason field
introduces the reason for a transition from VMX non root to
VMX root.

The pseudocode for our algorithm to uncover different
states for vCPUs is depicted in Algorithm 1. The vCPU state
builder (VSB) algorithm receives an event as input and updates
the SHT as output (Line 1). In case the event is sched wakeup,
the state of the vCPU in the SHT is modified to wait state (Line
3-5). When the VSB algorithm receives the kvm exit event, it
first modifies the exit reason attribute of the vCPU in the SHT
(Line 8) and then changes the status of the vCPU as VMX root
state (Line 9). When receiving a kvm entry event, the state of
the vCPU is adjusted to VMX non root state (Line 12). The
most important event, sched switch, shows when a vCPU is
running on a pCPU. When a vCPU is scheduled in, it goes
to VMX root state (Line 17) to load the previous state of the
virtual machine from the VMCS. In contrast, when a vCPU is
scheduled out, it goes to either the idle state or the preempted
state. In order to distinguish between these two states, the
VSB algorithm queries the last exit reason of the vCPU. If
the last exit reason is HLT, which means that the VM runs
the idle thread, the state will be modified as idle (Line 22). In
other cases of exit reason, it will be changed as preemption
state (Line 24). We implemented the proposed algorithm in
TraceCompass [17] as new graphical view for vCPU threads
inside the host, and vCPUs inside the VM. In the next section,
we present the results of some tests for two use cases.

IV. ARCHITECTURE

We use Openstack as an API for controlling the virtual
resources. Although the Openstack compute component can
be run on a variety of hypervisors, KVM is the most used
hypervisor for openstack [18]. We also use KVM as kernel
hypervisor or VMM for our analysis. KVM is a linux module
that acts as kernel hypervisor and lets a userspace program use
the hardware virtualization features. Therefore, to have a VM
on top of KVM, we needs a userspace program. We use Qemu
as the userspace part of the hypervisor, so that the operating
system of each VM could be run on Qemu. Our architecture
is shown in Figure 2. Other components are explained below.

Fig. 2: Architecture of our implementation

A. Tracer

In order to analyse the behavior of each VM and find out
the vCPU status, we use a lightweight tracing tool called the



TABLE I: Experimental Environment of Host and Guest

Host Environment

CPU Intel(R) i7-4790 CPU @ 3.60GHz

Memory Kingston DDR3-1600 MHz, 32GB

Operating System Ubuntu 15.10 (Kernel 4.2.0-27)

Qemu Version 2.5

LTTng Version 2.8

Guest Environment

vCPU One vCPU- Haswell Model

Memory 2GB

Operating System Ubuntu 15.10 (Kernel 4.2.0-27)

Linux Trace Toolkit Next Generation(LTTng)[19]. LTTng is
implemented for high throughput tracing and includes lttng-
module for linux kernel tracing and lttng-ust for userspace
tracing, with minimal overhead. Therefore, it is suitable for
our experiment since we want a low impact on VMs. The host
kernel and KVM module are instrumented by different static
tracepoints. When the events are generated, LTTng gathers and
sends them to the trace analyser. We explain the main tasks of
the trace analyser in the next section.

Fig. 3: State History Tree used to store different information
of virtual machines
B. Trace Analyser

In our architecture, the trace analyser receives the events
from the tracer and stores useful information about the VMs
in a state history tree (SHT). We implemented our trace
analyser in TraceCompass [17]. TraceCompass is an open
source software for analysing traces and logs. It has some pre-
built views, especially for LTTng. The SHT is tree shaped disk
database of logical nodes to store data in TraceCompass. This
data can represent the state of various components in the traced
system as integer, long integer or string values associated with
a time interval. The data is first stored in memory and later
committed to disk. The access time to this data, even on disk,
is fast and logarithmic[20]. The structure of the SHT used
for our analysis is depicted in Figure 3. This SHT can store
all the necessary information about vCPUs. Each VM has
different vCPUs, named by their CPU ID. The vCPUs can
be in different states, and different threads could be executing

on them. When the event comes from the tracer, meaningful
information is extracted and stored in the SHT. Once the SHT
is constructed, we can browse through the state, retrieving the
stored information, by querying the SHT. To query one of the
SHT attributes, the path representing the resource of interest
(e.g., vm name/vCPU/CPU 0/exit reason) is needed.

V. USE CASES - PREEMPTIVE VIRTUAL MACHINES

In this section we show how detecting the status of vCPUs
could help us to find out the cause of latency in the virtual
machine. Our experimental environment is described in Table
I. The Qemu version is 2.5 and the KVM module is based on
Linux kernel 4.2.0-27. We use sysbench which is a benchmark
suite for analysing different system resources. For the CPU
performance analysis of virtual machines, we set sysbench to
run 30 times to check how many prime numbers are in first
10000 numbers. After each execution, it waits for 200ms and
redoes the task. We start a virtual machine (VM1) with one
CPU and pinned it’s vCPU0 to pCPU0. We execute sysbench
in the virtual machine and then we trace the virtual machine
with LTTng. Figure 4 shows the result of execution latency.
As shown, the execution time is almost the same for each run
and the average is 324ms, with standard deviation of 5ms. As
we expect, the execution time for same workload should be
almost the same.

For the next evaluation, we start another virtual machine
(VM2) and pined its vCPU0 to pCPU0. We configured sys-
bench similarly to the previous experiment with VM1, except
that we set it to wait for 800ms after each execution. We run
Sysbench for both VMs at the same time and trace VM1.
Figure 5 shows the execution time of the Sysbench thread
for each run inside the VM. As we see, the execution time
for the same task is sometimes different and the VM has the
illusion of running the Sysbench thread all the time. In this
analysis, the average execution time is 443ms, compared to
324ms in the previous test. Even more surprising, the standard
deviation for running 30 times the same task is 116ms. We
found the cause of the variation in the execution time for the
same workload by looking at the vCPU threads, which are
Qemu threads inside the host. We find out during this test
that the two VMs were preempting each other several times.
Figure 6 depicts the flow view of vCPU threads for two virtual
machines. The Running state (Green color) in this figure is
when VM is either in VMX root mode or non-root mode.
The Preemted State (Purple color) is when the vCPU thread
is preempted inside the host. The IDLE state for a vCPU is
shown as Blocked State (Yellow color) in the control flow
view. Also, for a clearer picture, we zoom in the time slice
where two virtual machines were preempting each other. A
vCPU thread is scheduled in for a short time slice, then the
scheduler, without notifying VM1, schedules it out and give
the pCPU0 to another task which is VM2’s vCPU.

There is a trade-off between CPU utilization and preemp-
tion. As CPU utilization increases, more preemption occurs.
IaaS providers wish to increase resources utilization to gain
profit, while maintaining a high QoS to stay in the business.
Overcommitment of CPUs may cause serious latencies for
VMs. Therefore, preemption can be one of the most important
factor in the service level agreement (SLA) between the VM
user and the Cloud provider. Using our analysis, the cloud



Fig. 4: Execution time of the prime thread (vCPU view) when only one virtual machine is running on pCPU0

Fig. 5: Execution time of the prime thread (vCPU view) when two virtual machines are running on pCPU0

Fig. 6: Control flow view of vCPU threads from two different virtual machines in the Host - Preemption

provider could find out when preemption occurs and which
VM is preempting others more.

VI. USE CASES - FREQUENT TRANSITION

EPT violation is another vm exit reason that changes
the state of vCPU from VMX non root to root. It occurs
when a VM attempts to access a page that is not allowed
by the EPT paging structure, known as a KVM page fault.
IaaS providers overcommit virtual resources to utilize them as
much as possible and use fewer servers. However, sometimes
overcommitting virtual resources saturates the resources and
causes some problem for VMs. In this section, we represent
how overcommitting the memory could increase the latency
in virtual machines. Figure 7 depicts how a vCPU of VM1 is
transiting from VMX root and non root frequenty. It executed
VM code for a small period, then it was forced to exit to VMX
root state. In order to find out frequent exit reasons, we wrote
an analysis that could find out more frequent exit reasons and
the associated execution duration. This analysis can help us
to guess the behavior of the thread running in the VM and
uncover any undue latency. We wrote a C program that writes
random numbers into 1GB of memory, named eat mem. This
program executes frequently in VM1, VM2, and VM3. We also
wrote another program that executes a small CPU intensive
task inside VM4 and VM5 randomly. Furthermore, in order to
overcommit the memory, we modified the eat mem program
to use 25 GB of RAM in the host. The result of our experiment
is found in Table II. We observed that VM1, VM2 and VM3
suffered more from overcommitting the memory since they
were executing a memory intensive program. VM1, VM2, and
VM3 were executing eat mem for 1.5s in average, but 15%
of their time is wasted in average because of overcommitting
the memory. Also, we can infer that VM1 is suffering more
from memory overcommitment.

TABLE II: Execution time for different VMs when the host is
suffering from Memory overcommitment

VM name Execution
Time(ms)

Freq EPT
Violation

EPT Violation
Total Time(ms)

Percentage(%)

VM1 1329.09 3554 237.4 17.8
VM2 1834.5 18801 260.5 14.2
VM3 1332.4 15288 141.2 10.6
VM4 1169.1 0 0 0
VM5 1857.8 30 0.2 0

TABLE III: Comparison of our approach and the multi-level
tracing approach [16] in term of overhead for synthetic loads

Benchmark Baseline VSB Multi-level Overhead

VSB
(%)

Multi-
level
(%)

File I/O (ms) 233 328 361 28.72 35.29
Memory (ms) 319 331 344 3.67 7.23

CPU (ms) 339 352 361 3.72 6.11

VII. OVERHEAD ANALYSIS

In this section we compare the overhead of our approach
with the multi-level tracing [16] approach. Table III represents
the differences in term of overhead between two ways of
detecting the vCPU state. We used Sysbench benchmarks to
reveal the overhead of both approaches since sysbench is
configured for Memory, Disk I/O and CPU intensive evalua-
tions. In order to compare the two approaches, we enabled the
tracepoints that were needed for Mohamad Gebai’s multi-level
tracing approach, and we trace the VM and Host at the same
time. Also it is worth mentioning that our new VSB algorithm
needs only to trace the host. As shown in the table, the multi-
level tracing approach adds more overhead in all tests since
it needs to trace the VM and the host. We have run the tests
several times and the results are almost the same for each run.
Our approach has negligible overhead for CPU and Memory



Fig. 7: Control flow view of vCPU thread of one VM in the Host - Frequent Transition (EPT-Violation)

intensive work at almost 3%. For I/O intensive workloads, is
has 28% overhead, which is expected since LTTng is also
writing the events to the same disk.

VIII. VIRTUAL MACHINE DISSECTION

The process identifier (PID) and process name of each
thread inside the guest is not directly accessible from host
tracing. The only information which can be uncovered by host
tracing about the threads inside the VMs, is written in CR3
and SP. CR3 and SP can identify the process and thread,
respectively. Indeed, CR3 points to the page directory of a
process in the virtual machine. All threads of a process share
same the same page directory, therefore switching between
two threads within the same process does not change the CR3
value. SP points to the stack of the thread inside the virtual
machine. As a result, by retrieving these two identifiers, we
can find out which thread is executing on a vCPU. In order
to implement this, we create a new trace point, named as
vcpu enter guest, for the host by using kprobe, which can
retrieve CR3 and SP from the VMCS at each vm entry.

To have more information about threads inside the VMs,
we need to map CR3 and SP to the PID and process name. This
is not strictly necessary since CR3 and SP are unique identifiers
of threads, but it is more convenient and human readable if we
can map the process info inside the guest with the information
we get from the vcpu enter guest trace point. We wrote a
process state dump module for the guest to dump CR3, stack
range, PID and process name for each thread inside the VM at
the beginning of the trace and also at each thread creation. As
we find out in section VII, just enabling the sched switch trace
point inside the guest adds almost 3% overhead to the guest
execution. We claim that our approach adds a much lower,
negligible, overhead to the VM when we dump the process
information once during the whole trace.

Fig. 8: Mapping retrieved CR3 and SP from guest area of
VMCS to PID and Thread Name

Algorithm 2 Guest Thread Analysis (GTA)

1: procedure GUEST THREAD ANALYSER(Input: event,
guest threads info Output: Updated SHT)

2: switch event do
3: case vcpu enter guest
4: sp = value of sp field
5: cr3 = value of cr3 field
6: Map CR3 and SP to process information

from VM and modify Status attribute of exec name and
thread id

7: case sched switch
8: next thread = value of next comm field
9: prev thread = value of prev comm field

10: if next thread == vCPUj thread then
11: Mapp information about thread inside the

VM
12: Modify Status attribute of thread inside the

VM in SHT as Running
13: end if
14: if prev thread == vCPUi thread then
15: Map information about thread inside the

VM
16: Modify Status attribute of thread inside the

VM as IDLE
17: end if
18: end procedure

Figure 8 shows the mapping procedure between informa-
tion from the VMCS and guest threads. CR3 and SP are
extracted from the VMCS guest area at each transition by
registering a kprobe to the vcpu enter guest function. Then,
within a process, they are mapped with the thread information.
The output of this process is a thread name and its TID which
is executing on the physical CPU. Algorithm 2 represents
the guest thread analysis (GTA). It receives events and guest
thread information as an input and it updates the SHT for
threads inside the VM (line 1). In the case of the event being
vcpu enter guest, the stack pointer and CR3 of that thread
are gathered from the VMCS guest state and the process
information of the VM in the SHT is updated (line 3-6). When
the GTA algorithm receives a sched switch event, it updates
the state of Running or IDLE (line 7-17).

We implemented the proposed algorithm in TraceCompass
as a new graphical view for threads inside the VM. To ex-
amine our algorithm, we wrote two C programs that calculate
fibonacci numbers in a busy loop. We named them as fibo and
cpu burn. We used ssh to connect to VM. First, fibo is then run
and, after 1 sec., we run the cpu burn program. Figure 9 shows
the resource view of the host and the VM thread view at the
same time. We see that first a vCPU thread runs on pCPU1
and, after 1 sec., another vCPU thread executes on pCPU0.
When we used our algorithm, the VM view represents the



Fig. 9: Control flow view of threads inside the virtual machine

threads running on these two pCPUs at that time. We observe
that the fibo program was running on pCPU1 and cpu burn
was executing on pCPU0.

IX. CONCLUSION AND FUTURE WORK

Cloud computing is pervasively used in industry, as a
result of the Pay as Use model that it brings. However,
current monitoring tools do not provide enough information
for troubleshooting and debugging VMs. Moreover, in most
cases, access to the VMs are restricted, so administrative tools
on the host cannot easily provide information about the state
of the VMs. Therefore, there is a need for low-overhead tools
that can extract meaningful information from VMs without
internal access. In this paper, we proposed a new tool for
analysing the behavior of VMs inside a host. Our tool analyses
the vCPU threads inside the host and examines the state of
the vCPUs inside the VMs. We then showed how our tool can
find different problems in the VMs along with their root cause.
We also compared our approach with existing techniques and
measured the overhead associated with each technique. A new
method for profiling the threads inside the VM was proposed
and implemented. Furthermore, we implemented several new
views for VMs that can help administrators to visually track
the behavior of the guests. In the future, we plan to extend
our work to use hardware traces (Intel-PT). Intel-PT is a new
feature in new Intel processors that lets us trace the behavior
of guest OSes with very low overhead.
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